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An additive semi-implicit projection scheme for the simulation of unsteady com-
bustion in two dimensions is constructed. The scheme relies on a zero-Mach number
formulation of the compressible conservation equations with detailed chemistry.
The governing equations are discretized in space using second-order differences
and integrated in time using a semi-implicit approach. Time integration of the evo-
lution equations for species mass fraction, thermodynamic pressure, and density
is performed using a semi-implicit, nonsplit scheme that combines a second-order
predictor–corrector treatment of convection and diffusion terms, and a stiff integra-
tor for the reaction source terms. Meanwhile, the momentum equations are inte-
grated using a second-order projection scheme. The projection scheme is based on
a predictor–corrector approach that couples the evolution of the velocity and den-
sity fields in order to stabilize computations of reacting flows with large density
variations. A pressure Poisson equation is inverted following both the predictor and
corrector steps using a fast solver. The advantages of the stiff integration of reac-
tion source terms are analyzed by comparing the performance of the scheme to that
of a predictor–corrector scheme in which reaction and diffusion are integrated in
a similar nonstiff fashion. The comparison in based on both one-dimensional (1D)
unsteady tests of a premixed methane–air flame, and unsteady two-dimensional tests
of the same flame interacting with a counterrotating vortex pair. In both cases, the
GRImech1.2 reaction mechanism with 32 species and 177 elementary reactions is
used. Computed results show that the stiff reaction scheme enables selection of
larger time steps and thus leads to substantial improvement in the performance of the
computations. For the present reaction mechanism and flame conditions, speedup
factors of about 10 are achieved in the 1D tests and about five in two dimensions.
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Possible extensions of the present scheme to further improve efficiency are also
discussed. c© 1998 Academic Press
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1. INTRODUCTION

Direct numerical simulation of turbulent reacting flow is generally difficult, in large part
due to the very broad ranges of flow and chemical scales. An immediate consequence
of the dynamical flow complexity is that unsteady three-dimensional computation of tur-
bulent combustion with detailed chemistry is beyond the reach of present computational
capabilities. Thus, it is essential to consider simplified problems that enable the isolation
of representative features of turbulent flames, to develop numerical formulations that effi-
ciently handle the scale disparity of the flow, and to carefully tailor the algorithmic nature of
the numerical implementation to optimize the use of available resources. This is the general
direction of the present investigation.

It is a well-known fact that incorporation of a detailed chemical kinetic mechanism in a
reacting flow model can result in a stiff system of governing equations. As a consequence of
this stiffness, explicit time integration of reaction source terms is restricted to very small time
steps, leading to inefficient implementations. The severity of this limitation can be illustrated
by noting that, for the methane–air reaction mechanism presently considered, the critical
time step (∼2 ns) in an explicit scheme is governed by the stiffness of the reaction source
term and is substantially smaller than the diffusive stability limit (∼20 ns in 2D for an
atmospheric methane–air flame, with a uniform meshh = 15.6µm). Naturally, restrictions
of the same nature also arise in various other applications where stiff reactions prevail.

There has been a considerable amount of work on the numerical integration of stiff
systems of ordinary differential equations (ODEs) [1, 2], which arise in a wide range
of applications, from combustion to atmospheric modeling, to electrical circuits. It was
Curtiss and Hirschfelder [3] who provided the first pragmatic definition of stiff equations
as those for which certain implicit methods, particularly backward difference formulas
(BDF), perform better than explicit ones. More recently, various stiff ODE-integration code
packages, generally based on Gear’s [4] variable-order BDF method, have been developed
(e.g., GEAR [5], GEARB [6], LSODE [7, 8], and VODE [9]). Particularly, in LSODE and
VODE, nonstiff systems are integrated with Adams–Moulton/Adams multistep formulae,
whereas stiff systems are integrated using BDFs, which are solved using a modified iterative
Newton procedure. A recent review and comparison of various schemes for the integration
of stiff chemical kinetic rate equations [10] is presented by Saylor and Ford [11].

It should be emphasized, of course, that the implementation of elaborate stiff schemes
such as those in LSODE and VODE involves significant computational overhead. Thus,
one concern is whether the advantages achieved by the use of stiff (or implicit) integration
schemes, which may enable large stable time steps, are not offset by the additional cost
associated with the numerical solution of systems of linear equations. This issue has received
renewed attention in the literature, and recent experiences with systems involving detailed
reaction mechanisms, including atmospheric chemistry (e.g., [12]) and combustion (e.g.,
[13, 14]), reveal that despite the additional computational overhead required, stiff schemes
remain quite attractive. Furthermore, in light of the computational and theoretical study of
D’Angelo and Larrouturou [14], the use of stiff schemes may in fact be highly recommended
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for combustion applications with detailed stiff chemistry. Specifically, it is shown in [14] that
somelinearized-implicit schemes and nonstiff fully implicit schemes may be, in practical
combustion applications, subject to critical time step restrictions that are more severe than
those of fully explicit schemes. Thus, in such situations, careful implementation of a stiff
solver may be the best alternative that enables the use of suitably-large, stable time steps.

Several studies aiming at improving the efficiency of stiff integration schemes have
recently appeared, the majority of which have specifically focused on reaction mechanisms
of the type encountered in atmospheric chemistry. Some of the approaches exploit the special
structure of the atmospheric chemistry kinetics which—depending on the mechanism—may
lead to sparse Jacobians. This motivates the application of specialized matrix-free inversion
techniques (e.g., [15–17]), which in some situations provide an attractive alternative to
Newton iterations. When the structure of the equations enables efficient evaluation of higher
derivatives, the implementation of stiff, higher order Taylor methods [18] has also been
shown to be advantageous.

Other studies have followed a more physically motivated approach, based on the distinc-
tion between “slow” and “fast” variables, with long and short characteristic time scales,
respectively. In the implementation of such an approach, the evolution equations for the
slow variables are typically integrated using explicit formulations, while fast variables are
treated using either a stiff Newton-iterative method (e.g., [19, 20]) or “extrapolation” (or
“projection”) [21, 22] techniques that rely on a quasi-steady-state approximation [23]. The
advantage of these approaches is that in the former case, one ends up with a reduced system
of implicit nonlinear equations whose solution can be more efficiently performed, while
in the latter case an iterative procedure that avoids the inversion of a Jacobian is used. A
“hybrid” method [24] has also been proposed, whereby slow variables are integrated with
a predictor–corrector formulation while an asymptotic predictor–multicorrector integration
is used for the fast variables. Note, however, that sufficient care must be exercised to ensure
that the errors associated with these time-scale-segregation schemes are at an acceptable
level [11, 12]. When both accuracy and numerical efficiency considerations are included,
a recent review [11] finds implicit stiff-integration of the full kinetic equation system to
be superior to several schemes that rely on segregation of time scales [23–25]. Other vari-
ants of enhanced implementation of stiff schemes include the selective (adaptive) use of
stiff and nonstiff methods based, for example, on “time-local” rates of heat release [26]. In
these situations, significant savings may be achieved whenever the stiff formulation, and
the associated overhead, can be avoided.

Unfortunately, the effectiveness of specialized stiff implementations such as those
mentioned above in one- or multidimensional unsteady combustion applications is far from
evident. Two issues need to be specifically addressed. The first stems from the fact that in one-
or multidimensional reacting flow, the chemical stiffness of the equations is compounded,
if not significantly aggravated, by diffusive, convective, and, if relevant, sonic phenomena.
This issue is of particular importance for premixed flames, which tend to be characterized
by very thin fronts. In these situations, one may expect that diffusion, reaction, and con-
vection are tightly coupled, at least in the neighborhood of the moving flame front. Thus,
one concern is whether an operator-split formulation, used typically to reduce the integra-
tion of reaction source terms to a zero-dimensional setting, would lead to large integration
errors. Recent evidence in this area [14, 27, 28] suggests that operator-split formulations
generally tend to penalize the accuracy of integration. The suitability of operator-splitting
approaches may thus be problem-dependent and, due in part to rather limited experiences
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with unsteady multidimensional reacting flows, is likely to remain an open issue for a while
to come. Second, even if an operator-splitting approach is deemed suitable, adaptation of the
specialized stiff integrators mentioned above to unsteady combustion applications may still
prove difficult. For instance, some approaches assume a special kinetic mechanism structure
and may not easily generalize to complex hydrocarbon chemistry. Others are based on clear
identification of “fast” and “slow” species. While this segregation of time-scales may be
easily donea priori in atmospheric computations, it is by no means obvious in combustion,
where relative amplitudes of eigenvalues can change drastically across the flame due to
the significant changes in temperature and mixture composition across it. Experience in
combustion modeling [29] suggests that tabulation of system eigenvalues over the flame
thermo-chemical phase space is a viable approach, providing the necessary information
for segregation of time scales for the possible range of parameters. On the other hand, the
memory requirements necessary for tabulation make this approach impractical for detailed
kinetic mechanisms with large numbers of species.

The discussion above reflects yet another difficulty, namely that a straightforward, simul-
taneous, implicit treatment of diffusion, convection, and reaction terms is also problematic.
Briefly, such an approach would lead to very large systems of nonlinear equations, whose
solution can be prohibitive due to excessive memory and CPU requirements. Due in large
part to these difficulties, it is generally recognized that semi-implicit, mixed formulations are
more suitable than fully implicit schemes, at least for unsteady multidimensional applica-
tions. These typically combine an implicit or stiff integration procedure for reaction source
terms with an explicit treatment of convection and either explicit [14, 27, 30, 31] or implicit
[22, 28, 32] treatment of diffusion. Implicit treatment of diffusion appears to be desirable
for the simulation of premixed flames which, due to their thin structure are subject to stiff
diffusive time-step restrictions. When an operator-split formulation is used, implicit diffu-
sion equations can be efficiently performed, especially when a constant-property model is
used. When a nonsplit formulation is used and/or variable mixture properties are accounted
for, the use of alternating-direction-implicit (ADI) schemes [22, 32] may be particularly
attractive.

This paper describes initial steps towards the construction of an efficient numerical
scheme for the direct simulation of unsteady, multidimensional combustion with stiff de-
tailed chemistry. The specific objective of this phase of the effort is to explore the enhance-
ment of a projection scheme for the simulation of unsteady, multidimensional combustion
with detailed chemistry by incorporation of a stiff integrator. Attention is focused exclu-
sively on overcoming the temporal stiffness due to the reaction mechanism. Issues related
to diffusion stiffness, specialized solvers, and operator-splitting approaches are deliber-
ately omitted from the scope of the present effort. The starting point in the development
is the predictor–corrector projection scheme which was developed and tested in previous
efforts [33, 34]. As summarized in Section 2, the underlying physical model is based on a
zero-Mach-number formulation of the compressible conservation equations (e.g., [34–37]).
The zero-Mach-number formulation accounts for the compressibility of the medium but ig-
nores the effect of elastic waves. Thus, it naturally avoids potential sonic CFL limitations.
Section 3 provides a brief summary of the nonstiff predictor–corrector projection scheme
and describes its extension to stiff chemistry. The extension is based on modifying the
corrector step by incorporating a stiff integrator scheme for the reaction source terms. The
performance of the stiff code is analyzed in Section 4.1 in light of one-dimensional (1D)
unsteady tests on the propagation of a premixed methane–air flame. In particular, the tests
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are used to analyze the convergence of the stiff computations and to evaluate the resulting
improvement in code performance. The performance of the stiff code is further analyzed
in Section 4.2 in light of an extended two-dimensional (2D) simulation of the interaction
of a premixed methane–air flame with a counterrotating vortex pair. Conclusions are given
in Section 5, which also provides a discussion of the present improvements and motivates
further extensions.

2. FORMULATION

The physical model is based on a zero-Mach-number formulation of the compressible
conservation equations [35]. In the zero-Mach-number limit, acoustic wave propagation is
ignored, and the pressure field is decomposed into a spatially uniform componentP0(t)
and a hydrodynamic componentp(x, t) which varies both in space and time. Attention is
restricted here to open domains; i.e., the thermodynamic pressureP0 is constant in time
as well. The present model assumes a two-dimensional flow, zero bulk viscosity [38],
and a detailed chemical reaction mechanism that involvesN species andM elementary
reactions. Soret and Dufour effects [39], radiant heat transfer, and body forces are ignored.
The mixture is assumed to obey the perfect gas law, with individual species molecular
weights, specific heats, and enthalpies of formation, using Fickian binary mass diffusion.
Under these assumptions, the nondimensional mass, momentum, and energy conservation
equations are respectively expressed as

∂ρ

∂t
+∇ · (ρv) = 0 (1)

∂(ρu)

∂t
+ ∂(ρu2)

∂x
+ ∂(ρuv)

∂y
= −∂p

∂x
+ 1

Re
8x (2)

∂(ρv)

∂t
+ ∂(ρvu)

∂x
+ ∂(ρv

2)

∂y
= −∂p

∂y
+ 1

Re
8y (3)

∂T

∂t
+ v · ∇T = 1

Re Pr

∇ · (λ∇T)

ρcp
+ 1

Re Sc

Z · ∇T

cp
+ Da

wT

ρcp
(4)

whereρ is the density,v = (u, v) is the velocity vector, Re, Pr, Sc, and Da are the Reynolds,
Prandtl, Schmidt, and Damk¨ohler numbers respectively,8x,8y are the viscous stress terms,
Z≡ ∑N

i=1 cp,i Di N∇Yi , cp,i is the specific heat of thei th species at constant pressure,
cp=

∑N
i=1 Yi cp,i is the corresponding mixture specific heat,T is the temperature,λ is the

thermal conductivity,wT =−
∑N

i=1 hiwi is the chemical heat release source term,hi =
ho

i +
∫ T

To cp,i dT is the enthalpy of speciesi, wi is the production rate of speciesi , and the
superscripto is used to denote known reference conditions.

The Nth species, here N2, is assumed dominant such that the diffusion velocity of any
other speciesi 6= N in the mixture is approximated byV i = −Di N∇Yi /Yi , whereDi N is
the binary mass diffusion coefficient of speciesi into theNth species at the mixture local
temperature and stagnation pressure, andYi is the mass fraction of speciesi . VN is found
from the identity

∑N
i=1 Yi V i = 0. Further, for computational efficiency, mixture transport

properties(µ, λ) are set to those of the dominant species at the local temperature.
The conservation equation for thei th species,i = 1, . . . , N− 1, is written as

∂(ρYi )

∂t
= −∇ · (ρvYi )+ 1

Re Sc
∇ · (ρDi N∇Yi )+ Dawi , (5)
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and the mass fractionYN is found from the identity
∑N

i=1 Yi ≡ 1. The perfect gas state
equation is expressed asPo = ρT/W, whereW ≡ 1/(

∑N
i=1 Yi /Wi ) is the local effective

molar mass of the mixture. The production rate for each species is given by the sum of
contributions of elementary reactions [39], with Arrhenius ratesrk = AkTbke−Ek/RT, k =
1, . . . ,M . The overall progress of an elementary reaction accounts for both forward and
backward rates, and corrections for third body efficiencies, and pressure dependence [40].

Finally, for the purposes of the numerical implementation described below, the time rate
of change of density is found by differentiating the equation of state,

∂ρ

∂t
= ρ

(
− 1

T

∂T

∂t
− W

N∑
i=1

1

Wi

∂Yi

∂t

)
(6)

and substituting for∂T/∂t and∂Yi /∂t from Eqs. (4) and (5), respectively.

3. NUMERICAL SOLUTION

As mentioned in the Introduction, the starting point in the construction of the stiff scheme
is a second-order predictor–corrector projection scheme [41, 42] for 2D unsteady flow.
Below, we first provide a brief description of the original predictor–corrector scheme and
then discuss its extension to stiff reactions.

3.1. Predictor–Corrector Projection Scheme

The predictor–corrector scheme is based on a second-order finite difference discretization
of the equations of motion [33, 34]. Specifically, we assume an open 2D rectangular domain,
and discretize variables using a staggered grid with uniform cell size in each coordinate
direction. Velocity components are specified at cell edges, while scalar fields are discretized
at cell centers. Spatial derivatives are approximated using second-order centered differences.

Numerical integration of the semidiscrete equations is performed using a predictor–
corrector approach. The predictor uses a second-order Adams–Bashforth time integration
scheme to update the velocity and scalar fields and incorporates a pressure correction step
in order to satisfy the continuity equation. The corrector relies on a second-order quasi
Crank–Nicolson integration, and also incorporates a pressure correction step. In both cases,
the pressure correction step involves the inversion of a pressure Poisson equation which is
implemented using a fast Poisson solver. Implementation of the algorithm is summarized
as follows.

PREDICTOR.

1. The local time derivatives∂T/∂t |n, ∂(ρYi )/∂t |n, i = 1, . . . , N − 1, and∂ρ/∂t |n, are
evaluated from Eqs. (4), (5), and (6), respectively.

2. Predicted values for the density and scalar concentration fields are determined using

ρ∗ − ρn

1t
= 3

2

∂ρ

∂t

∣∣∣∣n − 1

2

∂ρ

∂t

∣∣∣∣n−1

(7)

ρ∗Y∗i − ρnYn
i

1t
= 3

2

∂(ρYi )

∂t

∣∣∣∣n − 1

2

∂(ρYi )

∂t

∣∣∣∣n−1

(8)
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and the predicted temperature distribution is found from the equation of state,

T∗ = PoW
∗
/ρ∗. (9)

3. An intermediate velocity field,̂v= (û, v̂), is then determined by integrating the
pressure-split momentum equations [42],

ρ∗û− ρnun

1t
= 3

2
Rn

x −
1

2
Rn−1

x (10)

ρ∗v̂ − ρnvn

1t
= 3

2
Rn

y −
1

2
Rn−1

y , (11)

where

Rx = −∂(ρu2)

∂x
− ∂(ρuv)

∂y
+ 1

Re
8x (12)

Ry = −∂(ρvu)

∂x
− ∂(ρv

2)

∂y
+ 1

Re
8y. (13)

4. The intermediate hydrodynamic pressure field is determined by inverting the pressure
Poisson equation [43],

∇2 p∗ = 1

1t

[
∇ · (ρ∗ v̂)+ ∂ρ

∂t

∣∣∣∣∗], (14)

where∂ρ/∂t |∗ is given by the second-order discretization [44]:

∂ρ

∂t

∣∣∣∣∗ = 1

21t
(3ρ∗ − 4ρn + ρn−1). (15)

Note that∂ρ/∂t |∗ cannot be evaluated directly from Eq. (6) since(u∗, v∗) are not known at
this stage.

5. Finally, the predicted velocity fieldv∗ = (u∗, v∗), is obtained using the projection step:

ρ∗u∗ − ρ∗û
1t

= −∂p∗

∂x
(16)

ρ∗v∗ − ρ∗v̂
1t

= −∂p∗

∂y
. (17)

CORRECTOR.

6. The temporal derivatives of the scalar fields at the new time leveltn+1 are estimated
based on the predicted values, and corrected values for the density and species concentrations
are obtained using a second-order quasi Crank–Nicolson integration [45],

ρn+1− ρn

1t
= 1

2

(
∂ρ

∂t

∣∣∣∣n + ∂ρ∂t

∣∣∣∣∗∗) (18)

ρn+1Yn+1
i − ρnYn

i

1t
= 1

2

(
∂(ρYi )

∂t

∣∣∣∣n + ∂(ρYi )

∂t

∣∣∣∣∗∗) (19)
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while the new temperature distribution is found using the equation of state,

Tn+1 = PoW
n+1
/ρn+1. (20)

The estimates for∂T/∂t |∗∗, ∂(ρYi )/∂t |∗∗, and∂ρ/∂t |∗∗ are obtained by substituting the
predicted scalar and velocity fields into Eqs. (4), (5), and (6), respectively.

7. A second, intermediate velocity fieldv′ = (u′, v′) is determined using the pressure-
split momentum equations:

ρn+1u′ − ρnun

1t
= 3

2
Rn

x −
1

2
Rn−1

x (21)

ρn+1v′ − ρnvn

1t
= 3

2
Rn

y −
1

2
Rn−1

y . (22)

8. The pressure distribution at the new time level is obtained by inverting the pressure
Poisson equation,

∇2 pn+1 = 1

1t

[
∇ · (ρn+1v′)+ ∂ρ

∂t

∣∣∣∣n+1
]

(22)

with

∂ρ

∂t

∣∣∣∣n+1

= 1

21t
(3ρn+1− 4ρn + ρn−1). (23)

Here again,∂ρ/∂t |n+1 cannot be evaluated directly from Eq. (6) since(un+1, vn+1) are not
known at this point.

9. Finally, the velocity field at the new time levelvn+1 = (un+1, vn+1) is determined
using

ρn+1un+1− ρn+1u′

1t
= −∂pn+1

∂x
(24)

ρn+1vn+1− ρn+1v′

1t
= −∂pn+1

∂y
. (25)

The above predictor–corrector scheme has been used in [33] for reacting flow modeling.
Tests have shown that the predictor alone is conditionally stable for relatively low ratios
between the temperature of the burnt(Tb) and unburnt(Tu) fluids, roughlyTb/Tu ≤ 2. At
higher temperature ratios, incorporation of the corrector step is necessary for stability.

Finally, we note that the present scheme has common aspects with several earlier com-
putational studies of chemically reacting flows at low Mach number, in particular those of
McMurtry et al. [43], Rutlandet al. [46, 47], and Mahalingamet al. [44]. The present for-
mulation resembles more closely that of Rutlandet al., who also used a predicator–corrector
approach.

3.2. Projection Scheme for Stiff Chemistry

Extension of the above scheme to stiff chemistry is based on modifying the update of
the scalar fields in the corrector step only. Thus, the predictor step is left unchanged, and
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the velocity update in the corrector step is performed in an identical fashion as in the
original scheme summarized above. In the stiff scheme, the scalar update in the corrector
step is based on a mixed, nonsplit (additive) integration of the species and density evolution
equations. Consequently, all the terms which explicitly involve the species rate equations
are handled using a stiff integrator which is adapted from the DVODE integration package
[9]. Meanwhile, all the remaining terms are treated as in the original formulation, i.e. using
a quasi Crank–Nicolson approach.

In order to describe the construction of the stiff corrector, we first rewrite the species
and density evolution equations in a form suitable for a mixed semi-implicit additive stiff
integration. Specifically, the species mass fraction evolution equation is written as

∂(ρYi )

∂t
= Ci + Di + Ri , (26)

where

Ci = Ci (ρ, v,Yi ) ≡ −∇ · (ρvYi ) (27)

Di = Di (ρ, T,Yi ) ≡ − 1

Re Sc
∇ · (ρYi V i ) (28)

Ri = Ri (ρ, T,Yi ) ≡ Dawi (29)

denote the species convection, diffusion, and reaction source terms, respectively. Mean-
while, the density evolution equation is expressed as

∂ρ

∂t
= Cρ + Dρ + Eρ + Rρ + Eρ (30)

where

Cρ ≡ ρ

T

(
v+ 1

cpRe Sc
Z
)
· ∇T (31)

Dρ ≡ − 1

Re PrcpT
∇ · (λ∇T) (32)

Eρ ≡ W

ρ

N∑
i=1

−∇ · (ρvYi )− (1/Re Sc)∇ · (ρYi V i )+ Yi∇ · (ρv)
Wi

(33)

Rρ ≡ − 1

cpT
DawT (34)

Eρ ≡ W
N∑

i=1

Dawi

Wi
. (35)

Here,Cρ represents the density source term due to convection and species diffusion,Dρ

the contribution of thermal diffusion, whileRρ is the reaction source.Eρ andEρ arise from
differentiation of the equation of state and represent the density changes due to the changes
in the local mass of the mixture.

The construction of the stiff scheme is based on identifyingRi , Rρ , andEρ as stiff terms
and treating the remaining terms as in the original formulation. To this end, Eqs. (26)
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and (30) are rewritten as a collection of spatially decoupled initial value problems, each
consisting ofN coupled nonlinear ODEs:

∂(ρYi )

∂t
= 1

2

(
Cn

i + Dn
i

)+ 1

2

(
C∗i + D∗i

)+ Ri (ρ, ρY), (36)

i = 1, . . . , N − 1, and

∂ρ

∂t
= 1

2

(
Cn
ρ + Dn

ρ + En
ρ

)+ 1

2

(
C∗ρ + D∗ρ + E∗ρ

)+ Rρ(ρ, ρY)+ Eρ(ρ, ρY), (37)

whereρY = (ρY1, ρY2, . . . , ρYN−1) is the reduced local vector of the mass concentrations
of all but the last species. Equations (36) and (37) are integrated locally fromtn to tn+1 using
the DVODE stiff integration routine. The integrations are performed independently at the
cell centers, where the scalar fields are defined.

The implementation of the stiff scheme relies on the use of the above two equations in
the corrector stage above. The predictor–corrector setup remains unchanged except that
ρn+1 andYn+1

i are found from the stiff-integration procedure applied to Eqs. (36), (37)
rather than the quasi Crank–Nicolson formulation in Eqs. (18), (19). Here then is the
additional computational overhead required by the stiff scheme. The integration of these
two equations may require several evaluations of the reaction rate terms and the Jacobian
matrix of the system. Minimizing this overhead is crucial to the performance of the scheme.
This necessitates the optimal use of the DVODE integration package.

The integration algorithm in DVODE is based on high-order backward difference for-
mulas, whose implementation requires the solution of a system of nonlinear equations. To
this end, DVODE incorporates an iterative nonlinear equation solver. This solver requires
an estimate of the Jacobian of the source terms in the original system of ODEs. In the
calculations, the Jacobian is evaluated using exact formulas which are derived by analyti-
cally differentiating the definitions ofRi , Rρ , andEρ , given in Eqs. (29), (34), and (35),
respectively. As the expressions for the reaction source terms are quite involved [40], the
derivation is quite lengthy and leads to a large number of formulas. These are incorporated
in the computations but, for brevity, are not reproduced here.

3.3. Computational Issues

Significant code optimization is necessary to allow efficient modeling of reacting flow
with detailed kinetics. This optimization and the performance numbers reported below are
based on the available hardware, namely a shared-memory parallel SGI PowerChallenge-L
machine with eight R10K processors, and 1 MB secondary cache size. The code is optimized
at various levels for both the stiff and nonstiff schemes.

To begin, consider the core reaction rate routine, which is used in both the stiff and nonstiff
schemes. As would be expected, this is the most computationally intensive part of the nonstiff
scheme. Contrary to initial expectations, however, it is not necessarily the exponential
or other intrinsic function evaluations in the reaction rate expressions that are the most
expensive. Rather, and depending on computational hardware, memory access operations
may be more costly. Particularly, nonsequential array indexing can entail significant memory
access overhead, depending on CPU cache size and configuration. In order to minimize this
overhead, the reaction rate routine is symbolically generated before the simulation by parsing
the specific chemical mechanism of interest. The output is a set of source code files which
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are then compiled into the code, eliminating the many looping and indexing constructs
which would otherwise be necessary to compute the reaction rates during execution. This
technique is also employed in the stiff scheme for both function and jacobian evaluations.

Moreover, the particular data structure implementation has significant implications to
parallelization, even on a shared memory architecture. Particularly, in order to enhance the
parallel efficiency of the stiff code, the entire stiff integration operation on each cell was
designed to be local to the processor owning that cell. This necessitated the modification
of the structure of DVODE to use only local data passed through argument lists rather than
the original FORTRAN COMMON constructs.

Finally, the present adaptation of DVODE differs from its “normal” application mode
which attempts to adaptively optimize the integration time step and accordingly modify the
order of integration. To do so, DVODE would require a large amount of memory, which is
in large part dominated by storage requirements for previously computed Jacobians. While
storage of the Jacobians is possible for small problems, for instance in one spatial dimension,
it is generally prohibitive for multidimensional problems with detailed chemistry, except
possibly on large massively parallel architectures. To avoid excessive memory requirements,
we have opted not to store the Jacobians and to restrict the use of DVODE to a “startup”
mode only. While this approach provides a simple means to avoid a severe memory problem,
it leads to a suboptimal use of the capabilities of the routine. Nonetheless, as shown in the
following section, the present stiff scheme still yields significant computational savings
over its predecessor.

4. RESULTS

We will study the performance of the above scheme in one- and two-dimensional un-
steady flow. We use the GRImech1.2 [48] C(1)C(2) chemical mechanism for premixed
methane–air combustion and consider a stoichiometric 20% N2-diluted methane–air flame
at atmospheric pressure with reactants at ambient temperature in an open domain. The mole
fraction composition of the reactants mixture(CH4 : O2 : N2) is (0.08 : 0.15 : 0.77).

4.1. One-Dimensional Flow

The performance of the stiff scheme is studied in 1D relative to the original nonstiff
scheme. An initial condition is computed using Chemkin [40, 49] in 1D for a freely propa-
gating premixed methane–air flame with the above reactants mixture and chemical mech-
anism. This solution is interpolated onto the uniform 1D grid used in the present code and
used to initialize the computations.

The initial flame structure is shown in Fig. 1. The computational domain is 0.8 cm long
with outflow boundary conditions. Reactants, products, and key active radical mole fractions
are shown. The flame is burning to the left into the reactants. The temperature profile is
shown, with the temperature rising from 300 to 1900 K in the flame.

For conciseness let us refer to the nonstiff and stiff schemes as A and B, respectively.
Four grid refinement levels are chosen, withn = 256, 512, 1024, and 2048 cells on the 1D
domain. Given the stiff chemical mechanism under consideration, the time step stability
restriction for scheme A is dictated by chemical stiffness and is therefore independent of
the cell sizeh in the range considered. The necessary stable time step for this scheme,
determined empirically, is1tc,A∼ 2 ns. On the other hand, in the stiff scheme, implicit
handling of the chemical source terms using DVODE eliminates this chemical stiffness
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FIG. 1. Initial condition corresponding to the 1D premixed methane–air flame, showing mole fractions of
reactants, products, and key radicals, as well as the temperature profile.

restriction. Practical experience with the scheme suggests that the time step is then limited
by the diffusive stability restriction. Notably, we find that the stiff-integration process in
DVODE attempts time steps much larger than the actual time step for which the overall
scheme is stable, suggesting that the limitation on the time step is not chemical. Given the
maximum diffusivity, Dmax, namely that of the H radical, and the particular cell sizeh,
the classical diffusive stability restriction for an explicit scheme isDmax1t/h2 < 1/2q,
whereq is the number of space dimensions. This is in fact the scaling we observe empir-
ically here forq = (1, 2), suggesting that this diffusive stability restriction indeed holds
for the present stiff scheme consistent with its semi-implicit construction which uses an
explicit/predictor–corrector diffusion formulation.

For the present 1D flow, the critical time step is found to be1tc,B ∼ 40 ns forn = 512
(cell sizeh = 15.6µm). This spatial resolution is the minimum necessary for adequate
representation of the atmospheric premixed methane–air flame structure and is the value
used below in the 2D computations. Clearly, the utility of the stiff scheme is evident at
this refinement level, with a factor of 20 increase in the time step. Note, however, that
implementation of the stiff scheme necessitates additional computational overhead, such
that the net speedup factor is smaller than the ratio of time steps. Experience with the
scheme indicates that the additional overhead is primarily associated with evaluation of the
Jacobian and its inversion, rather than function evaluations. The choice of stiff-integrator
relative and absolute tolerances has a relatively small effect on integration cost. For relative
and absolute tolerances of(10−6, 10−6), the Jacobian is computed once, and the reaction
terms are computed three times—once in the predictor and twice in the corrector—per time
step per cell. As tolerances are made more stringent, the number of function calls required
increase mostly for the few cells within the flame structure, and to a lesser extent in the
products behind the flame, but not in the reactants. No additional Jacobian evaluations are
necessary anywhere, such that the net result is a minor effect on overall performance. For
example, taking the relative and absolute tolerances from(10−6, 10−6) to (10−8, 10−12)

results in a mere 8% increase in CPU time. In the present 1D computations, we measure
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FIG. 2. Convergence of the RMS error between 1D flame solutions with successive mesh refinements, for
each of the nonstiff (A) and stiff (B) schemes.

a net speedup factor of about 10. Thus, the implementation of the stiff scheme and the
associated increase in code complexity are well justified. This advantage vanishes at higher
mesh refinement as the diffusive stability limit becomes more restrictive. Thus, forn =
2048, h = 3.9µm,1tc,B ∼ 2.5 ns, and given1tc,A ∼ 2 ns, results in a “speedup” factor
of 1

2(1tc,B/1tc,A) = 0.63, indicating that the nonstiff scheme is in fact more efficient.
The spatial convergence of the scheme is studied in 1D by comparing the solutions with

successive mesh refinement after integration to 0.2 ms. Letφ be a general field quantity,
andε a root-mean-square (rms) error measure. For each of the two schemes (A or B) we
evaluate the relative spatial convergence rate based onε(h) = ‖φ(h) − φ(h/2)‖2, whereh is
the cell size. The time step for the nonstiff scheme is fixed at1tA = 2 ns, while1tB ∝ h2

per the diffusion stability constraint. The corresponding second-order convergence rate for
each scheme is illustrated in Fig. 2, using the temperature, density, and heat release rate
fields. We also study the rms deviation between the two schemes, which is found to exhibit
second-order convergence withh as well, thus demonstrating that the two schemes converge
to the same solution. The temporal convergence rate is studied similarly using time-step
refinement for a fixedh corresponding ton = 256. This study used a precomputed initial
condition that provides the necessary second-order startup for the scheme, with a variable
time-step version of the Adams–Bashforth procedure used for the first time step. With
1t = 10, 5, and 2.5 ns, the convergence rates forT, ρ, andwT are found to be: 2.2, 2.8,
and 1.9, respectively.

4.2. Two-Dimensional Flow

In a two-dimensional flow we study the interaction of the above premixed methane–air
flame with a counterrotating vortex pair. This is a typical flow that has been investigated
both numerically [34, 46, 50–53] and experimentally [54–59] and serves as a useful test
problem for comparing computed results with published data and for comparisons between
the present nonstiff and stiff schemes.
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FIG. 3. Time sequence illustrating computed flame interaction with the counterrotating vortex-pair, using
0.4×0.6 cm2 frames. The vertical right-hand side edge of each frame is the centerline of the vortex-pair, only half
of which is computed. The time span is from 0 to 0.32 ms, left to right, with an interval between adjacent frames
of 0.08 ms. The color map indicates gas temperature, with the unburnt reactants at room temperature in blue, and
the burnt combustion products in red. The flame location is roughly where the rapid color transition is observed.
The solid/dashed contours delineate levels of positive/negative vorticity, where positive vorticity corresponds to
counterclockwise fluid rotation.

An open rectangular domain is considered, with dimensions 0.4×0.8 cm2, and is overlaid
by a 256×512 grid with uniform cell size in each coordinate direction. We apply symmetry
boundary conditions in the horizontalx-direction and outflow boundary conditions in the
y-direction. The initial vorticity and temperature fields att = 0 are shown in the leftmost
frame of Fig. 3. The vertical right edge of the domain is the centerline of the vortex pair
under consideration, which is one member of an infinite periodic row of vortex pairs along
the horizontalx-direction. The initial condition is a superposition of the velocity(u, v)
field induced by the periodic row of vortex pairs, and the temperature, density, and mass
fraction (T, ρ,Yi ) distributions corresponding to a horizontal premixed flame, with the
initial structure in they-direction from the above 1D flame shown in Fig. 1. The vorticity
field corresponding to each initial vortex is a second-order Gaussian. The initial self-induced
velocity of the vortex pair is 300 cm/s. The maximum rotational velocity in the domain is
around 20 m/s, giving a Mach number of 0.067, a small value as required by the present
formulation.

The results shown in Fig. 3 are computed using the stiff scheme, with a near-critical
1t = 20 ns. The flame is observed to propagate downward, in the negativey-direction,
by burning into the reactants. The vorticity field causes significant contortion and large
variations in the topology of the flame as the vortex pair propagates upwards into it. A baro-
clinic vorticity dipole is generated in the neighborhood of the original vortex, in agreement
with the numerical results of [33, 46, 50] and the experimental measurements of Mueller
et al. [59]. This vortical fluid is then entrained into the vortex pair, in a continuing process
that leads to the generation of multiple folds of counterrotating vorticity inside the original
vortex. By this process some hot products are entrained into the reactants in the vortex core,
enhancing the ongoing diffusive heating of the cold unburnt fluid in the core. The global
dynamics of this flow involve rapid penetration of the fast vortex pair into the flame and
the formation of a pocket of unburnt material carried through by the vortex pair. These
dynamics reflect the relative disparity between flame and vortex-pair time scales, the ratio
of which yields a Damk¨ohler numberDa = 0.04. With Da ¿ 1, the flow is significantly
faster than the flame, and it is expected that significant contortion of the flame will occur, as
observed here. In a turbulent flow regime, this would correspond to a well-stirred condition
[60].
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FIG. 4. Flame laminar burning speed (relative to the unburnt fluid) and thermal thickness variation with
arc-length, measured along the flame contour fromx = 0 to the vortex-pair centerline, att = 0.16 ms. Data is
presented for each of the stiff (B) and nonstiff (A) schemes, overlaid on each other.

This flow field was also computed using the nonstiff scheme. A time step of 4 ns was
chosen, larger than the above 2 ns dictated by chemical stiffness stability. As we shall
see shortly, the overall flow features predicted by both schemes are nearly identical in the
initial stages of the computation, and very similar for the entire simulation. However, with
a time step that exceeds the threshold dictated by the stiffness of the reaction, the nonstiff
scheme suffers from the growth of small-amplitude instabilities as would be expected.
Nonstiff scheme computations with 2 ns time steps were prohibitively expensive, while
those made using a 4 nstime step provided both useful early time results and a clear
illustration of the onset of instability.

We start by noting that the global flow dynamics predicted by the nonstiff scheme are
nearly identical to those shown in Fig. 3. In fact, the relative root-mean-square deviation
between the two schemes, whether based on temperature, density, velocity, or overall heat-
release rate, remains less than 0.2% during the entire period of the simulation 0≤ t ≤
0.3 ms. Further examination of the computations also leads to similar observations.

For instance, we plot in Fig. 4, for both stiff and nonstiff schemes, the variation of the
local flame burning speed (displacement speed based on the unburnt reactants density,
Su

d = ρSd/ρu) and thermal thickness (based on the temperature rise across the flame and
the peak local temperature gradient normal to the flame,(Tb − Tu)/(∂T/∂n)max). The
figure shows both quantities plotted against flame arc-length, with an origin at the flame
intersection with the left domain boundary and extending to the vertical centerline. Both
identify clearly the location of the curved flame cusp. The flame thickness is seen to increase
significantly at the cusp location, due to the local compressive tangential strain and the
ensuing broadening of the flame structure. On the other hand, the thickness decreases in
regions of large tangential stretch near the centerline. This dependence of the flame thickness
on stretch has been noted in [61] and is a result of the convective strain field acting on the
flame. Referring again to Fig. 4, the flame speed is found to be in the vicinity of 20 cm/s
at the left domain boundary, decaying rapidly to a large negative value at the cusp and
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FIG. 5. A normal slice section of the flame at the vortex-pair centerline showing CH4 consumption rate(wCH4)

and flame heat release rate(wT ) profiles, using both stiff and nonstiff schemes, at times 0, 0.16, and 0.32 ms. The
x-axis is the flame normal distance, measured from a reference point defined as the location whereYCH4 is 10%
of YCH4,max. The results from both schemes are overlaid and are in such agreement that their differences are not
discernible on the scale of the plot.

tending to a smaller, still negative value, at the centerline. Negative flame speeds have
been observed in 1D flames using simple chemistry [61] and at positively curved cusps
in a 2D turbulent premixed methane–air flame using detailed C1 kinetics [62]. In [33],
similar observations were evident using the above nonstiff scheme (with a stable time step)
for the same vortex-pair interaction using a skeletal C1 kinetic mechanism. The present
computations using either of the two numerical schemes presented above give virtually
identical results, as shown in Fig. 4. The maximum deviation observed in these profiles is
0.14%.

Agreement between the two schemes is also evident in normal flame slices at the centerline
and at the cusp region for reaction source terms. As an example, consider the consumption
rate of CH4 and the heat release rate at both locations, shown in Figs. 5 and 6, respectively.
In either case, consistent with earlier data [33], the fuel consumption rate and the heat
release rate decay in time due to the interaction with the vortex pair. Here, again, the results
from the two schemes are indistinguishable in the figures. The maximum deviation in these
profiles on the centerline is 0.03%. At the cusp, the peak rms deviation att = 0.16 ms is
0.03%, rising to 4.6% att = 0.32 ms. The latter deviation may be traced to the sharpness
of the cusp, and the corresponding error/noise in identifying the peak curvature location
and the construction of the normal vector. Overall, however, the agreement between the two
schemes is good both at the centerline and the cusp.

On the other hand, detailed inspection of the data reveals a growing wiggle in the nonstiff
scheme results due to the large (4 ns) time step as expected. This problem is not evident in
the stiff scheme results, which are computed with a stable time step. In order to illustrate
this, consider the centerline slice of the net production rate of CH∗

2, a species with large
(roughly equal and opposite) production and consumption rates, shown in Fig. 7. Here again,
the global features allow no distinction between the profiles corresponding to each scheme.
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FIG. 6. A normal slice section of the flame at the curved cusp showing CH4 consumption rate(wCH4) and
flame heat release rate(wT ) profiles, using both stiff and nonstiff schemes, at times 0, 0.16, and 0.32 ms. The
x-axis is the flame normal distance, measured from a reference point defined as the location whereYCH4 is 10%
of YCH4,max.

The plot shows the variation ofwCH∗2 in time, and the A and B profiles are coincident at
this resolution for all time. On the other hand, a small but growing anomaly is observed on
the left-hand side of the figure. Looking more closely at this region, as shown in Fig. 8, a
high-frequency growing wiggle is clearly evident in the nonstiff (A) scheme results with
1t = 4 ns, but nonexistent in the stiff (B) scheme results with1t = 20 ns. For the present
short-time simulation, the amplitude of this anomaly is still two orders of magnitude smaller

FIG. 7. A normal slice section of the flame at the vortex-pair centerline showing the CH∗
2 production rate

(wCH∗
2
) profile, using both stiff and nonstiff schemes, at times 0, 0.16, and 0.32 ms. Thex-axis is the flame normal

distance, measured from a reference point defined as the location whereYCH4 is 10% ifYCH4,max.
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FIG. 8. An amplified portion of the the CH∗2 production rate(wCH∗
2
) profile, on the reactants side of the flame,

along the vortex-pair centerline. Data is plotted using both stiff (B) and nonstiff (A) schemes for several time
instances from 0 to 0.32 ms, as indicated. Thex-axis origin in this plot is shifted from that in Fig. 7.

than the peakwCH∗2 data. However, it is evident that for longer simulation times the nonstiff
scheme requires a smaller time step, roughly less than 2 ns, to stabilize the predictor–
corrector time integration. On the other hand, the stiff scheme continues to be stable at
20 ns.

Thus, the stiff scheme results are found to be stable, convergent, and consistent with
available data in 2D unsteady reacting flow. With the above factor of 10 increase in the time
step and given the additional computational overhead, the stiff scheme is found to be faster
by a factor of 5 in 2D on available computational hardware. This is a substantial advantage
that allows efficient computations of lean-to-rich methane flames with detailed kinetics in
generic flows that involve unsteady 2D flame–flow interaction.

5. CONCLUSIONS

An efficient numerical scheme for the simulation of low-Mach-number reacting flow with
detailed chemistry is developed. The construction is based on an extension of a predictor–
corrector projection formulation for reacting flow with large density variation. The extension
is based on modifying the corrector step by incorporating, in a nonsplit semi-implicit for-
mulation, a stiff time-integration approach for the terms affected by the reaction source
terms. The stiff integration code DVODE is adapted to this purpose.

The performance of the stiff scheme is analyzed empirically in one dimension, based on
unsteady computations of a premixed methane–air flame, and in two dimensions through
a detailed simulation of the interaction of the same flame with a counterrotating vortex
pair. In all cases, the GRImech1.2 reaction mechanism, which involves 32 species and 177
elementary reactions, is used. Results of the stiff computations are compared to data ob-
tained using the original nonstiff scheme with significantly smaller time steps. Unsteady
one-dimensional computations indicate that the stiff scheme retains the second-order con-
vergence properties of its predecessor. In addition, both 1D and 2D tests indicate that the
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stiff scheme overcomes the time step restrictions associated with the stiffness of the reac-
tion. For the presently considered reaction mechanism, the stiff scheme achieves speedup
factors of about 10 in one dimension and roughly five in two dimensions.

It should be emphasized that the encouraging improvement exhibited by the stiff scheme
is by no means immediate and is not achieved by simple incorporation of DVODE on any
hardware. The speedup factors achieved are machine dependent [14]. The estimates provided
here reflect experience on an SGI PowerChallenge-L with eight R10K processors and 1 MB
secondary cache size. The present speedup has been reached following careful optimization
of the reaction rate and Jacobian code structure on this hardware to minimize the overhead
related to memory access. Moreover, the data-organization structure of DVODE had to
be altered in order to allow local execution on shared-memory processors with no data
dependencies.

The present computations reveal that, in its current version, the limitations of the stiff
scheme are due to a somewhat severe diffusive time step restriction, which is dictated by
the gas mixture properties and flame spatial scales. Future extension of this work will focus
specifically on means to overcome this limitation and will also target further enhancement
of the stiff solver. Ultimately, our aim is the development of an unsteady, multidimensional,
low Mach number reacting flow solver which overcomes both the chemical and diffusive
stiffness of the equations in an efficient, stable, and accurate fashion. In this ideal situation,
selection of suitable integration time steps would be primarily governed by accuracy and
resolution considerations only.
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